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Properties of Determinants

To each square matrix A, we can associate a scalar called the
determinant of A and denoted det(A). The process for
computing det(A) will be described in class.
Theorem 2.64: Let A € My(R).

@ If Ahas a row or column of zeros, then det(A) = 0.

@ If A= (ay) is an upper triangular, lower triangular, or

diagonal matrix, det(A) = aj1a22 - - - ann-

© Foralln>1,det(/;) =1.

O For all B € My(R), det(AB) = det(A) det(B).

© If Aisinvertible, then det(A) # 0 and det(A~") = 1/ det(A).

Math 231 Section 2.6 and 2.7



Properties of Determinants

To each square matrix A, we can associate a scalar called the
determinant of A and denoted det(A). The process for
computing det(A) will be described in class.
Theorem 2.64: Let A € My(R).

@ If Ahas a row or column of zeros, then det(A) = 0.

@ If A= (ay) is an upper triangular, lower triangular, or

diagonal matrix, det(A) = aj1a22 - - - ann-

© Foralln>1,det(l)) = 1.

O For all B € My(R), det(AB) = det(A) det(B).

© If Aisinvertible, then det(A) # 0 and det(A~") = 1/ det(A).

Note: For A, B € M,(R), the quantity det(A + B) does not
simplify in any meaningful way. In general, it is not equal to
det(A) + det(B).
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Rank and Nullity

Let A be any m x n matrix.

@ The rank of Ais defined to be the number of nonzero rows
in rref (A). (This is equal to the number of leading 1s in
rref (A).
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Rank and Nullity

Let A be any m x n matrix.

@ The rank of Ais defined to be the number of nonzero rows
in rref (A). (This is equal to the number of leading 1s in
rref (A).

© The nullity of A is defined to be the number of free
columns in rref (A).

© rank(A) + null(A) = n. (Theorem 2.67)

Q If Aand B are row-equivalent matrices, then
rank(A) = rank(B) and null(A) = null(B). (Theorem 2.68)
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Making Connections

Theorem 2.69: Let A be any n x n matrix. The following
conditions on A are equivalent:

@ rank(A) = n.
Q null(A) =0.
Q rref (A) = In.

© A can be written as the product of elementary matrices.
@ Ais invertible.

@ Ax = 0 has only the solution X = 0.

@ AX=Dbhasa unique solution for all b € R".

Q det(A) #0.
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